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Abstract

In this paper, we propose three formulations of a model describing a quasi-neutral plasma with non-vanishing

current. These formulations are obtained by exploring the quasi-neutral limit of a two-fluid isentropic Euler system cou-

pled with the Poisson equation. In order to study and compare the numerical efficiency of each formulation, two test-

problems are implemented in one dimension. The first one is a periodic perturbation of a uniform stationary plasma.

The second one is a case of plasma expansion in vacuum between two electrodes.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Modeling of quasi-neutral current-carrying plasmas

In this paper, which is a continuation of an earlier work [8], we are interested in the modeling of an

unmagnetized quasi-neutral two-species plasma constituted of electrons and one ion species. A first possible
description of this plasma is by means of the two-fluid Euler–Poisson system, which consists of the Euler

equations for each species coupled by the Poisson equation. For this model, an important dimensionless

parameter is the ratio of the Debye length to the typical size of the device. The Debye length measures

the typical scale over which charge unbalances can occur and, for this reason, must be resolved by the

numerical mesh size. Therefore, when this parameter is small, which is very often the case, numerical sim-

ulations require huge computational resources. In practice, multi-dimensional simulations and even, in
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some cases, one-dimensional simulations of this model are difficult to achieve. To overcome this problem,

quasi-neutral models are routinely considered. Such models are formally obtained from the two-fluid Eu-

ler–Poisson system by letting the ratio of the Debye length to the typical size of the device tends to zero.

Quasi-neutral plasmas may carry a non-zero current. For unmagnetized plasmas, the assumption of

zero-current is often made. In this case, the quasi-neutral model is very similar to the usual gas-dynamics
Euler equations. If however the current is not supposed to be zero, the form of the quasi-neutral model

differs significantly. The goal of this paper is to explore some numerical resolution methods in this case.

Physically, this situation has been widely studied and we refer to [44] and references therein for a review.

Mathematically, the quasi-neutral limit has been rigorously investigated for current-free plasmas ([7,49] for

instance), but to our knowledge, the current-carrying case is still open. Therefore, we shall limit ourselves to

formal arguments.

In the current-carrying quasi-neutral limit, the two-fluid Euler–Poisson model reduces to a two-fluid Eu-

ler model where the electric field is implicitly determined by the quasi-neutrality constraint. This formula-
tion can be re-written by formulating the quasi-neutral constraint as a divergence-free constraint for the

current. In this way, the electric potential can be explicitly determined by an elliptic equation. This corre-

sponds to a first formulation of the quasi-neutral model which we call ‘‘constrained two-fluid formulation’’.

Then, this system can be reduced successively to what shall be referred to as the ‘‘1.5-fluid formulation’’ and

the ‘‘one-fluid formulation’’ by combining the different conservation equations. These systems are consti-

tuted of a hyperbolic part and a source term. The successive reductions from the constrained two-fluid for-

mulation to the 1.5 and one-fluid formulations are performed by moving some terms from the source term

to the hyperbolic part of the system by means of the quasi-neutrality constraint. Therefore, these manipu-
lations change the hyperbolicity condition of the operator associated to the hyperbolic part. Indeed, this

operator is strictly hyperbolic in the constrained two-fluid formulation, not strictly hyperbolic in the 1.5-

fluid formulation, and conditionally hyperbolic in the one-fluid formulation. Moreover, the one-fluid for-

mulation which has been largely studied in [15] is ill-posed in multi-dimensional cases. We shall stress the

formal equivalence of these formulations: they are equivalent ways to write the same quasi-neutral model

but each formulation leads to different numerical schemes with different efficiencies. These schemes are

called constrained two-fluid, 1.5-fluid and one-fluid schemes.

The study of the different scheme efficiencies is the main point of this work. This is the reason why we
work in this paper on two test-cases which are mono-dimensional.

The first test-case consists of a periodic perturbation of a quasi-neutral uniform stationary plasma with a

non-zero current. For this test-case, we can compute the exact solution of the linearized problem about a

steady state. For small perturbations, the solution of the non-linear problem is believed to be close to the

solution of the linearized problem. Then, for each formulation, we compare the corresponding analytical

solution of the linearized problem to the numerical solution of the non-linear problem. Furthermore, this

study gives conditions of linear stability. Indeed, unstable cases correspond to the two-stream instability

(see e.g. [5]) which occurs in high current plasmas.
The second test-case is a case of plasma expansion between two electrodes in vacuum. A large density

plasma is emitted at the cathode and undergoes a thermal expansion. At the plasma–vacuum interface, elec-

tron emission occurs in the Child–Langmuir regime (see e.g. [5,11,12,18]) and generates a current inside the

plasma. The device is then divided in two adjacent zones: a quasi-neutral plasma zone with non-zero

current and an electron beam. This phenomenon and particularly the coupling of these two different zones

has been thoroughly studied in a series of works [13–16] in relation with high-current plasma diodes [54]

and arcing on satellite solar cells [6,19,39]. The goal here is to compare the numerical efficiency of each

formulation in a physical situation.
For both test-cases and for each system, the numerical method in one dimension is based on a time split-

ting: the hyperbolic part of each system is first resolved by a Godunov scheme [23]. Then, the source terms

are taken into account by an implicit Euler scheme coupled with the divergence-free constraint for the
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current. For the plasma expansion case, since the quasi-neutral plasma has an interface with the electron

beam, an interface tracking method is implemented with an adaptive mesh.

The paper is organized as follows. We first develop the physical context in Section 1.2. Then, in Section

2, we introduce the two-fluid Euler–Poisson model in the multi-dimensional case and the formal derivation

of the quasi-neutral model formulated by the constrained two-, 1.5- and one-fluid systems. In Section 3,
numerical schemes associated to each formulation are detailed. In Section 4, the test-case of perturbation

is described and the accuracies of the different schemes are compared. In Section 5, the plasma expansion

test-problem is described and the numerical schemes are compared. The proofs of technical results are col-

lected in Appendix A.
1.2. Physical context

In this section, we discuss in greater detail the applications we have in mind. The first application deals
with high-current plasma diodes [30,34,45,54,57]. High current plasma diodes are used for various applica-

tions such as high power micro-wave generation, free electron lasers, and material surface treatment. These

devices have been designed to produce intense electron beams. Conventional electron guns cannot emit cur-

rents beyond the Child–Langmuir limit [31] because the space-charge layer in the vicinity of the cathode

reflects the emitted electrons. However, if a plasma is formed at the cathode and expands towards the an-

ode, this limitation can be bypassed. Indeed, the electron emission now develops from the plasma–vacuum

interface, which is closer to the anode than the actual cathode. In the mean time, the plasma being a highly

conductive medium, the potential drop in the plasma is negligible and the overall potential drop is now sup-
ported by the gap between the anode and the plasma–vacuum interface. The Child–Langmuir current,

which is proportional to V3/2/L2, where V is the cathode to anode potential and L is the cathode to anode

distance, increases as L now stands for the plasma– vacuum interface to anode distance. This distance de-

creases with time as the plasma expands in the gap and the extracted current is continuously increased, until

the plasma shortcuts the electrodes.

In practice, the plasma is formed by the explosion of the cathode material (see e.g. [45]). The

explosive emission mechanism has been reviewed in [33], as well as in [30,34]. The cathode protrusions

locally generate large electric fields and electron field emission occurs at the tips. The Joule heat
released at the tip contributes to its melting and vaporization and a neutral cloud is formed. The neu-

trals are then ionized and an ionization sheath is formed. Additional cathode heating is provided by the

bombardment of the ions formed and accelerated in the sheath. The characteristics of the plasma are

difficult to measure and vary significantly with the distance to the cathode [33] but it seems that the

electron temperature does not exceed a few electronvolts. The modeling of the cathode plasma

expansion can be made by using the methods proposed in the present paper, in particular those devel-

oped for the plasma expansion case (second test-case). The physical problem studied here bear strong

analogies with the ion sheath problem, which have received much interest [1,22,24,42,43,46–48,53] and
references therein. The question of boundary conditions at sheath edges has been numerically

investigated in [37]. We also note that the kinetic analysis of a plasma bunch has been performed in

[29].

A second example where the present methods can apply is the modeling of arc formation on

satellite solar generators. Power on satellites is generally provided by solar generators which use semi-

conductor solar cells to convert solar radiation energy into electrical power. Solar generators consist of

individual solar cells of about a few cm2 in surface, which are connected in series into �strings� to pro-

vide the required potential difference (usually ranging from 50 to several hundreds of volts). Strings are
then connected in parallel to deliver the requested power to the satellite equipments. Solar cells are

made of high quality semiconductor materials (usually Germanium) and are very expensive to fabricate.
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It happens too often that after a certain operation time, an entire portion of the solar generator under-

goes a permanent failure. The reason for it is the occurrence of an electrical arc which shortcuts one or

several strings.

The scenarios for arc formation on satellite solar generators have been widely investigated [6,25–

28,38,50,51,56]. According to this scenario, the satellite charging in the earth environment plasma trig-
gers a primary discharge between a cell interconnect and the dielectric which is used in the protective

layer. The so-created plasma plume expands and eventually connects and shortcuts two neighboring so-

lar cells. The potential difference between the two cells (which is generated and maintained by the oper-

ation of the cells themselves) induces the transition of the primary discharge into a secondary arc. Once

this arc is established, it pyrolyzes the insulating kapton substrate and transforms it into a conductor,

which provides a permanent solid-state shortcut between the two cells, thereby irremediably deteriorat-

ing this part of the solar generator. The initiation and development of the primary discharge have been

modeled in [6,19,39]. The second phase of the discharge scenario, namely the expansion of the plasma
plume and the transition from the primary discharge into the secondary arc can be modeled by using

the methods presented here and particular those dealing with the second test-case (plasma expansion

case).

We now discuss the validity of the fluid description of the plasma. Indeed, this description is

only correct if collisions are frequent enough to relax the distribution function to a Maxwellian

equilibrium; otherwise, a kinetic description is necessary, as in [29]. A good measure of the collision

efficiency is the temperature relaxation rate which, for Coulomb collisions, depends on the plasma den-

sity and temperature [3,52]. For both the plasma diode case and the solar cell case, the temperature is
estimated to a few electronvolts (the neutrals ionization potential). The plasma density (which is

difficult to measure) can be estimated to 1019 m�3 in the diode case [33] and to 1021 m�3 in the solar

cell case [50]. A typical time scale of the device operation is the ion transit time in the gap, the latter

being about 10�1 m wide in the diode case and 10�3 m in the solar cell case. With these figures, the

product of the temperature relaxation rate by the typical time scale of the device operation is the same

in both examples: a few tens for ions, and a few thousands for electrons. For electrons, this number is

large enough for the fluid description to be meaningful. It is more questionable for ions, but one can

think that turbulence and microscopic inhomogeneities in the plasma will increase this figure by
some unknown factor, which makes the fluid description acceptable, if not fully justified. One should

mention that the fluid calculations are by orders of magnitude faster than kinetic ones, and can at least

be considered as valuable first guesses which need to be ultimately confirmed by fully kinetic

simulations.

A definite way to assess the validity of the fluid description would be by comparing it with a collisional

kinetic theory approach. However, stochastic codes using the Monte-Carlo method [35] develop a large

amount of numerical noise which makes it difficult to accurately capture fast transient phenomena. Deter-

ministic codes [2,4,10,20,21,36,40,41] certainly provide an interesting perspective but would necessitate
specific developments which are outside the scope of the present work.

Several other points require some discussion, such as the absence of neutrals or the neglect of electron–

ion collisions. Indeed, if the temperature is a few electronvolts, the plasma is likely to be only partially

ionized. Similarly, if electron–electron and ion–ion collisions are frequent enough to bring the particle dis-

tributions to equilibrium, electron–ion collisions should be included as well. Both could easily be accounted

for. In the same vein, one could discuss the isentropic assumption, which constrains the temperature to be a

power law of the density. Obviously, this assumption is not entirely correct, since fast, hot electrons can

reach the front of the plasma from the cathode. We have actually extended our work to Euler models
including energy equations [9], allowing for a better account of energy and heat transport. However, the

goal of the present paper is to provide an algorithmic and numerical perspective, rather than a fully exhaus-

tive physical point of view.
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2. Three formulations of a quasi-neutral model for current-carrying plasmas

In this section, we study the quasi-neutral limit in the two-fluid Euler–Poisson system. To this aim, the

Euler–Poisson system is scaled and the formal limit leading to the quasi-neutrality is explored. This limit

leads to a single quasi-neutral model that has several formally equivalent formulations.
2.1. The two-fluid Euler–Poisson model

We denote by mi,e the masses of ions and electrons, ni,e their densities, ui,e their velocities and qi,e = ±q

their charges where q > 0 is the elementary charge. The particle pressure laws are assumed isentropic and

are given by pi;e ¼ ci;en
ci;e
i;e , where ci,e > 1 are the ratio of specific heats and ci,e are given constants. The tem-

peratures are given by Ti,e = pi,e/ni,e. Moreover, / is the electric potential.

On a domain X � Rd ; d ¼ 1; 2; or 3, the particle conservation laws are given by 8x 2 X; 8t 2 R�
þ,
ðniÞt þr � ðniuiÞ ¼ 0; ð2:1Þ

mi ðniuiÞt þr � ðniui � uiÞ
� �

þrpiðniÞ ¼ qniE; ð2:2Þ

ðneÞt þr � ðneueÞ ¼ 0; ð2:3Þ

me ðneueÞt þr � ðneue � ueÞ
� �

þrpeðneÞ ¼ �qneE; ð2:4Þ
and the electric field E = �$/ is given by the Poisson equation
�e0D/ ¼ q ni � neð Þ; ð2:5Þ

where e0 is the vacuum permittivity. If we denote by n0 the scale of the plasma density and by T0 the scale of

the plasma temperature (in units of energy), we recall that the Debye length kD, which is the length scale

where electrostatic interactions occur in the plasma, is given by
k2D ¼ e0T 0

q2n0
: ð2:6Þ
The numerical resolution of the two-fluid Euler–Poisson model (2.1)–(2.5) presents a very restrictive con-

straint due to the coupling with the Poisson equation. Indeed, the Debye length kD must be resolved by the

space discretization to guarantee the stability of the scheme (i.e. Dx < kD where Dx is the mesh spacing). In

practical situationswhere quasi-neutrality is established, theDebye length is very small. This implies very large

computational costs in multi-dimensional cases. This is the reason why studying the quasi-neutral limit is nec-

essary to remove the time and length scale constraints related with the electrostatic ion–electron interactions.

2.2. Formal quasi-neutral limit in the scaled Euler–Poisson model

In order to obtain the asymptotic model, we first scale the Euler–Poisson model using the device char-

acteristic values. We denote the density scale by n0, the ion velocity scale by u0, the length scale by L and the

applied potential difference by /0. Then, the scaled variables are defined by �ni ¼ ni=n0;
�ne ¼ ne=n0; �ui ¼ ui=u0; �ue ¼ ue=u0; �x ¼ x=L; �/ ¼ /=/0; �t ¼ t u0=L; �T i;e ¼ T i;e=ðmiu20Þ a n d �pi;e ¼ pi;e= ðmin0
u20Þ.

Introducing the scaled variables in (2.1)–(2.5) and omitting the bars gives the scaled Euler–Poisson

model
ðniÞt þr � ðniuiÞ ¼ 0; ð2:7Þ
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ðniuiÞt þr � ðniui � uiÞ þ rpiðniÞ ¼ �nir/=g; ð2:8Þ

ðneÞt þr � ðneueÞ ¼ 0; ð2:9Þ

ðneueÞt þr � ðneue � ueÞ þ rpeðneÞ=e ¼ ner/=ðgeÞ; ð2:10Þ

�kD/ ¼ ni � ne: ð2:11Þ

with
e ¼ me

mi

; g ¼ miu20
q/0

; k ¼ e0/0

qn0L
2
: ð2:12Þ
The physical meaning of the dimensionless parameters (2.12) is the following: e = me/mi is the mass ratio, g
is the ratio of the thermal energy to the applied electric energy, and k is the ratio of the applied electrical

energy to the energy of coulombian interactions. In the remainder of the paper, we rescale the potential by
changing / into g/, considering that, in the plasma, the electric energy is of the order of the ion thermal

energy. We obtain
ðniÞt þr � ðniuiÞ ¼ 0; ð2:13Þ

ðniuiÞt þr � ðniui � uiÞ þ rpiðniÞ ¼ �nir/; ð2:14Þ

ðneÞt þr � ðneueÞ ¼ 0; ð2:15Þ

ðneueÞt þr � ðneue � ueÞ þ rpeðneÞ=e ¼ ner/=e; ð2:16Þ

kgD/ ¼ ni � ne: ð2:17Þ
The parameter kg is related to the Debye length kD (2.6) by:
k2D=L
2 ¼ kg: ð2:18Þ
In a quasi-neutral plasma, this parameter is very small and the limit kg! 0 is often considered.

In this limit, the solution of system (2.13)–(2.17) formally tends to the following system:
ðniÞt þr � ðniuiÞ ¼ 0; ð2:19Þ

ðniuiÞt þr � ðniui � uiÞ þ rpiðniÞ ¼ �nir/; ð2:20Þ

ðneÞt þr � ðneueÞ ¼ 0; ð2:21Þ

ðneueÞt þr � ðneue � ueÞ þ rpeðneÞ=e ¼ ner/=e; ð2:22Þ

ni � ne ¼ 0; ð2:23Þ
which will be the object of our study. We note that the potential / is now a sort of Lagrange multiplier of

the quasi-neutrality constraint (2.23). We shall now see that this system can be written using three different
but completely equivalent formulations. These formulations however cease to be equivalent at the discrete

level and this paper aims at discussing the merits and drawbacks of each of them.
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2.3. Three formulations of the quasi-neutral model

2.3.1. The constrained two-fluid formulation

The first formulation merely consists in keeping Eqs. (2.19)–(2.23). We may slightly transform this sys-

tem in order to derive an explicit equation for /. We proceed as follows: subtracting the mass conservation
laws (2.19) and (2.21) and using the quasi-neutrality constraint (2.23) leads to the divergence-free equation

for the current
r � niui � neueð Þ ¼ 0: ð2:24Þ

Assuming that at the initial time ni = ne, the divergence-free constraint for the current (2.24) is equivalent to

the quasi-neutrality constraint (2.23). Then, it leads to the ‘‘constrained two-fluid’’ formulation of the qua-

si-neutral model
ðniÞt þr � ðniuiÞ ¼ 0; ð2:25Þ

ðniuiÞt þr � ðniui � uiÞ þ rpiðniÞ ¼ �nir/; ð2:26Þ

ðneÞt þr � ðneueÞ ¼ 0; ð2:27Þ

e ðneueÞt þr � ðneue � ueÞ
� �

þrpeðneÞ ¼ ner/; ð2:28Þ

r � ðniui � neueÞ ¼ 0; ð2:29Þ

together with the following condition on the initial data:
niðt ¼ 0Þ ¼ neðt ¼ 0Þ: ð2:30Þ

Equation (2.29) allows to compute /. Indeed, taking the time-derivative of (2.29) and using the momentum
conservation laws (2.26) and (2.28) leads to an elliptic equation for the potential:
�r � ni þ
ne
e

� �
r/

h i
¼ r2 � niui � ui � neue � ueð Þ þ DpiðniÞ �

DpeðneÞ
e

: ð2:31Þ
Also, we note that the operator associated with the left-hand sides of Eqs. (2.25)–(2.28) is unconditionally

strictly hyperbolic, since it is constituted of two isentropic Euler operators for the electrons and the ions.

2.3.2. The 1.5-fluid formulation

We denote by n = ni = ne the plasma density, by j = niui � neue the current, and we define a new variable

w by
w ¼ � p0iðnÞ
ðci � 1Þ �

p0eðnÞ
eðce � 1Þ

� �
� 1þ 1

e

� �
/: ð2:32Þ
If we subtract the two momentum conservation laws (2.26) and (2.28), the constrained two-fluid formula-

tion can be reduced to a fluid system for the variables n, ui, j and w
nt þr � ðnuiÞ ¼ 0; ð2:33Þ

ð1þ eÞ ðnuiÞt þr � ðnui � uiÞ
� �

þrðpi þ peÞ ¼ enrw; ð2:34Þ

jt þr � ui � jþ j� ui � j� j=nð Þ ¼ nrw; ð2:35Þ
r � j ¼ 0: ð2:36Þ
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We refer to this system as the ‘‘1.5-fluid formulation’’ because it is formulated in terms of one fluid density n

and two fluid velocities or fluxes ui and j. Therefore, it is an intermediate formulation between a fully two-

fluid model like in the previous section and a fully one-fluid model like in the next section.

The new �potential� w is a scalar variable which again is a sort of Lagrange multiplier of the constraint

(2.36). Taking the divergence of (2.35) and using (2.36) leads to an elliptic equation for w:
�r � nrwð Þ ¼ �r2 � ui � jþ j� ui �
j� j
n

� �
: ð2:37Þ
The operator associated with the left-hand sides of (2.33)–(2.36) is hyperbolic but not strictly. Indeed, if we

consider d = 1, the eigenvalues of this operator are
k1 ¼ ui � vs; k2 ¼ ui þ vs; k3 ¼ 2ui � 2j=n;
where vs ¼ ððciT i þ ceT eÞ=ð1þ eÞÞ
1
2 is the sound velocity of the plasma. If k3 coincide with k1 or k2, there is a

resonance and the operator is not diagonalizable.

The choice of the variables n, ui and j is a matter of physical context. One could also take n, ue, j and keep
the electron momentum conservation equation instead, or n, u and j where u is the mean velocity of the

plasma u = (ui + eue)/(1 + e) and keep the sum of the two momentum conservation equations.

Eq. (2.35) on j does not express a physical conservation. When shocks occur, the Rankine–Hugoniot

relation for this equation is not necessarily physically true. This contrasts with the two-fluid formulation

where the ion and electron momentum conservation equations express physical conservations.

2.3.3. The one-fluid formulation (for one-dimensional cases)

The 1.5-fluid formulation can be reduced to a one-fluid system. Indeed, if n$w is substituted with
jt + $ Æ (ui � j + j � ui � j � j/n) in (2.34), we obtain
nt þr � ðnuiÞ ¼ 0; ð2:38Þ

ð1þ eÞ ðnuiÞt þr � ðnui � uiÞ
� �

þrðpi þ peÞ � er � ui � jþ j� ui � j� j=nð Þ ¼ ejt; ð2:39Þ

r � j ¼ 0: ð2:40Þ

In this model, the current is no longer determined by a (constrained) time evolution equation but simply by

the divergence-free constraint (2.40).

The one-fluid formulation has been intensely studied in [13–16] but it is ill-posed if the dimension d is

larger than 1. Indeed, there are 2 + d equations for 1 + 2d unknowns. Following [14,15], the left-hand side
of (2.38)–(2.40) is hyperbolic under the condition
e

ð1þ eÞ2
j2

n2
< v2s ; ð2:41Þ
where vs is the above-defined plasma sound velocity.

2.3.4. Merits and drawbacks of the various formulations

In one-dimensional, and when the current j is constant in time, the right-hand side of (2.39) vanishes and

the one-fluid model consists of two exact conservation laws (i.e. with no source terms). From this, we can

infer that the hyperbolicity condition (2.41) gives indeed the condition for well-posedness of any of the for-

mulations of the quasi-neutral model in a situations when the current is constant in time.

In the successive reduction from the constrained two-fluid formulation to the 1.5-fluid and one-fluid for-
mulations, the hyperbolic part of the system passes from strictly hyperbolic to non-strictly and eventually

conditionally hyperbolic. Strict hyperbolicity is a better framework for numerical simulations and we can
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think that the constrained two-fluid formulation will give the best results. In fact, this conclusion is

erroneous and the numerical experiments reported in the next sections show that the best formulation is

1.5-fluid one, in spite of the fact that the current conservation equation does not result from a physical con-

servation law. The constrained two-fluid formulation has some conditioning problems. Still, it might be

useful in situations where a quasi-neutral model needs to be coupled to a non-quasi-neutral one, such as
a plasma–sheath transition region. The one-fluid model is as efficient as the 1.5-fluid one [14,15] but cannot

be extended in dimensions more than 1.
3. Numerical methods

3.1. General framework

To study the numerical efficiency of the various quasi-neutral formulations, we have developed appro-

priate numerical schemes for each formulation in the one-dimensional case.

First, let us present the general ideas of the discretization. For x2X = [0,1] and t > 0, we write the sys-

tems (2.13)–(2.16), (2.25)–(2.28), (2.33)–(2.35) and (2.38) and (2.39) according to
W t þ F ðW Þx ¼ SðW Þ; ð3:1Þ

where:

� For the Euler–Poisson model and the two-fluid formulation,
W ¼ ðni; ne; niui; neueÞ; F ðW Þ ¼ ðniui; neue; niu2i þ pi; neu
2
e þ pe=eÞ; SðW Þ ¼ ð0; 0;�ni/x; ne/x=eÞ:
� For the 1.5-fluid formulation,
W ¼ ðn; nui; jÞ; F ðW Þ ¼ ðnui; nu2i þ ðpi þ peÞ=ð1þ eÞ; 2jui � j2=nÞ; SðW Þ ¼ ð0; enwx=ð1þ eÞ; nwxÞ:
� For the one-fluid formulation
W ¼ ðn; nuiÞ; F ðW Þ ¼ ðnui; nu2i þ ðpi þ pe � eð2jui � j2=nÞÞ=ð1þ eÞÞ; SðW Þ ¼ ð0; ejt=ð1þ eÞÞ:

Moreover, we consider the Poisson equation (2.17) for the Euler–Poisson system and the divergence-free

current equation (2.24) for the quasi-neutral systems. Then, an initial condition W(x,t = 0) is given and

boundary conditions at x = 0 and x = 1 are assigned for each equation.

We define a uniform grid of size Dx on the spatial domain [0,1] with N cells Mk = ]xk � 1/2,xk + 1/2[

k = 1, . . . ,N. Let Dtn be the time step Dtn = tn + 1 � tn and let us assume that a piecewise constant approx-

imation of the system (3.1) is given. Thus, we denote by W n
k the approximation of W on Mk · [tn,tn + 1[. At

each time step, the scheme consists of a time splitting: we first solve the hyperbolic part of (3.1) which gives

an intermediate solution denoted by eW , and then update this solution with the source terms. Then, using a

Godunov type scheme [23,55] the time-splitting scheme is given "k = 1, . . . ,N and n 2 N by
eW nþ1

k ¼ W n
k �

Dtn

Dx
F n

kþ1=2 � F n
k�1=2

� �
; ð3:2Þ

W nþ1
k ¼ eW nþ1

k þ DtnSð eW nþ1

k Þ: ð3:3Þ
where F n
kþ1=2 is the approximate flux given by a Riemann solver.
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In this paper, we use the upwind polynomial solver proposed in [17]. For the sake of completeness, we

quickly recall how this solver is constructed. The numerical flux F n
kþ1=2 is an approximation of the Roe flux

[23] and is defined by
F n
kþ1=2 ¼

1

2
F ðW n

kÞ þ F ðW n
kþ1Þ � W n

k � W n
kþ1

� �
Pkþ1=2
m

� �
; ð3:4Þ
where
Pkþ1=2
m ¼ PmðF 0ðW n

kþ1=2ÞÞ ð3:5Þ
is a mth degree polynomial applied to the Jacobian matrix F 0ðW n
kþ1=2Þ evaluated at the intermediate state

W n
kþ1=2 ¼ ðW n

k þ W n
kþ1Þ=2. The polynomial Pm(k) is constructed to be an approximation of the absolute va-

lue function k 2 R ! jkj in the interval comprised the minimal and maximal eigenvalue of F 0ðW n
kþ1=2Þ. in

this way, Pkþ1=2
m is an approximation of the absolute value jF 0ðW n

kþ1=2Þj of the jacobian matrix, and (3.4)

gives rise to an approximation of the Roe flux. The advantage of a polynomial expression like (3.5) is that

its evaluation does not require the computation of the eigenvectors of the Jacobian matrix, by contrast with

a conventional Roe scheme. In the cases where these eigenvectors are not analytically known or involve

complicated algebraic function, their computation can be numerically expensive and the polynomial scheme
provides an efficient and reliable approximation [17].

The polynomial Pm must satisfy certain requirement in order to ensure stability. More precisely, let

kmax(W) and kmin(W) be the maximal and minimal eigenvalues of F 0 (W). We define (we omit the time index

n for clarity)
akþ1=2
þ ¼ max kmax W kþ1=2

� �
; kmax W kþ1ð Þ

� �
;

akþ1=2
� ¼ min kmin W kþ1=2

� �
; kmin W kð Þ

� �
;

and
akþ1=2
max

akþ1=2
þ if jakþ1=2

þ j P jakþ1=2
� j;

akþ1=2
� otherwise:

(

Then, according to [17], if for all x 2 ½akþ1=2

� ; akþ1=2
þ �, we have:
jxj 6 Pkþ1=2
m ðxÞ 6 jakþ1=2

max j;

the scheme (3.4) is linearly stable under the CFL condition
Dt 6
Dx
amax

where amax ¼ max
k2Z

akþ1=2
max

		 		� �
:

In the present paper, we use a second degree polynomial P2 such that:
Pkþ1=2
2 akþ1=2

þ

� �
¼ jakþ1=2

þ j;

Pkþ1=2
2 akþ1=2

�
� �

¼ jakþ1=2
� j;

Pkþ1=2
2 akþ1=2

max

� �
¼ sign akþ1=2

max

� �
:

8>>><>>>: ð3:6Þ
The three constraints (3.6) define P2 in a unique way. It should be noted that the construction of the scheme

only requires the knowledge of the extreme eigenvalues, not the intermediate eigenvalues, nor the eigenvec-

tors. This solver is first order but can easily be converted into a second order solver by using Van Leer�s
MUSCL procedure (see e.g. [23,55] and references therein). In the present paper, we used the unmodified

first order polynomial scheme as described above.
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Finally, for the Euler–Poisson model and the two-fluid formulation, we note that for the first step of the

splitting (3.2), the ion and electron systems are decoupled. Then, we can consider the system (3.2) as two

systems with two equations. This allows to calculate separately the ion and electron fluxes with more accu-

racy. Moreover, it allows to implement the Godunov scheme (see e.g. [23]).

We now investigate the computation of Sð eW nþ1

k Þ for the various formulations of the quasi-neutral
model.

3.2. Specific remarks pertaining to the quasi-neutral models

The divergence-free constraint (2.24) requires an additional boundary condition. In one-dimensional,

this constraint reduces to ox j = 0 or j = Constant. We shall assume that this constant (generally

depending on t) is known, which will be the case in the two test-problems we shall investigate

later.

3.2.1. The constrained two-fluid scheme

We exploit the fact that the source terms are zero in the mass conservation equations. Then, we have

nnþ1
ik

¼ ennþ1
ik

and nnþ1
ek

¼ ennþ1
ek

. Since the current is constant and known at the time tn + 1, we have

"k = 1, . . . ,N
jnþ1 ¼ ðniui � neueÞnþ1

k : ð3:7Þ

Then, (3.3) gives
ðniuiÞnþ1

k ¼ ðgniuiÞnþ1

k � Dtnðni/xÞ
nþ1

k ; ð3:8Þ

ðneueÞnþ1

k ¼ ðgneueÞnþ1

k þ Dtnðne/x=eÞ
nþ1

k : ð3:9Þ

Combining (3.8) and (3.9) with (3.7) gives
ð/xÞ
nþ1

k ¼ � 1

Dtnðnnþ1
ik

þ 1
e n

nþ1
ek

Þ
jnþ1 � ðgniuiÞnþ1

k þ ðgneueÞnþ1

k

h i
: ð3:10Þ
Since jn + 1 is given, it is clear that the scheme guarantees a constant current in [0,1]. However, it does not
guarantee that nnþ1

ik
¼ nnþ1

ek
exactly but approximately (up to the order of the scheme). Then, in order to en-

force the quasi-neutrality, we have investigated two possibilities. The first one consists in projecting the ion

and electron densities on an average density before the computation of the electrical field �ð/xÞ
nþ1

k . We call

this operation the reprojection step:
nnþ1
ik

¼ nnþ1
ek

¼ 1

2
ennþ1
ik

þ ennþ1
ek

� �
: ð3:11Þ
The second solution is to use a Riemann solver for the computation of the fluxes F n
kþ1=2 which guarantees

the quasi-neutrality. One possibility is to use the HLLE solver and contrary to what is stated at the end of

Section 3.1, to consider that the system (3.2) is a single system with four equations. We refer to Appendix

A.1 for the expression of the numerical fluxes in this case. For this scheme, we can prove:

Proposition 3.1. We consider the two-fluid formulation with HLLE fluxes as in Section A.1. We assume that

quasi-neutrality holds initially, i.e. ni(x,t = 0) = ne(x,t = 0) and that the current is constant, i.e. ox(niui � ne
ue)(x,t = 0) = 0. Then, this scheme satisfies quasi-neutrality at all times exactly: "k = 1, . . . ,N and n 2 N, we

have nnik ¼ nnek .

Proof. See Section A.1. h
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3.2.2. The 1.5-fluid scheme

For this formulation, the source term corresponding to the mass conservation law is zero. Then,

nnþ1
k ¼ ennþ1

k . Since jn + 1 is known, the equation (3.3) gives directly ðwxÞ
nþ1

k by
ðwxÞ
nþ1

k ¼ ðjnþ1 � ejnþ1

k Þ=ðnnþ1
k DtnÞ: ð3:12Þ
3.2.3. The one-fluid scheme

For this formulation, as previously nnþ1
k ¼ ennþ1

k . Then, assuming that jn + 1 is given, jnþ1
t is computed by:
jnþ1
t ¼ ðjnþ1 � jnÞ=Dtn: ð3:13Þ
3.3. The Euler–Poisson scheme

For the Euler–Poisson scheme, the computation of the source terms is made in an implicit way. In-
deed, we exploit the fact that the source terms are zero in the mass conservation equations. Then,

nnþ1
ik

¼ ennþ1
ik

and nnþ1
ek

¼ ennþ1
ek

. Since we know the densities at time tn + 1, the electric potential /nþ1
k is

computed by solving the Poisson equation (2.17) with Dirichlet boundary conditions using a finite dif-

ference method. We then get the electric field by approaching �/x by finite differences, which deter-

mines SðW nþ1
k Þ.
4. Perturbation of a uniform plasma

This section is devoted to the study of a one-dimensional periodic perturbation about a uniform quasi-

neutral stationary solution of the Euler–Poisson and quasi-neutral systems. The aim of this study is to com-

pare the numerical solutions obtained by the various schemes (see Section 3) with the analytical solution of

the linearized systems. For this purpose, we recall how to establish explicit analytical formulae for the solu-

tions of the Euler–Poisson and quasi-neutral systems. In passing and because we need it for our numerical

study, we derive the conditions for linear stability of these solutions. The proofs of the following proposi-

tions are given in Appendix A. The stability analysis of the Euler–Poisson system is classical and can be
found in [5]. We note that if kinetic models are considered instead of fluid ones, more unstable regions

would be found.
4.1. The linearized Euler–Poisson and quasi-neutral systems

After scaling, we consider a quasi-neutral uniform stationary solution U0 of the Euler–Poisson system

given by
U 0 ¼ ðn0i ¼ 1; n0e ¼ 1; u0i ¼ 0; u0e ¼ uD;E0 ¼ 0Þ;

where uD is the electronic drift velocity.
4.1.1. Linear analysis of the Euler–Poisson model

In this section, we consider the Euler–Poisson system linearized about U0.

Proposition 4.1. Plane-wave solutions of the form W ¼ �W exp½iðkx� xtÞ� of the linearized Euler–Poisson

system exist iff x and k are related by the dispersion equation
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kg ¼ 1

x2 � ciT
0
i k

2
þ 1

e ðx� kuDÞ2 � ceT
0
e k

2
: ð4:1Þ
If there exists at least one solution x of (4.1) such that Im(x) < 0, the steady state U0 is unstable. Eq.

(4.1) can be put in the form of an algebraic equation of the fourth degree and has in general four solutions

which are not explicit. To solve this problem, we assume that T 0
i ¼ 0 and k > 0 since the dispersion relation

is invariant under the transformation (x,k)! (�x,�k).

Proposition 4.2. Assuming that T 0
i ¼ 0, we get three different configurations:

� If u2D > ð1þ e�1ÞceT 0
e , then $k* such that the solution is unstable for k < k* and stable for kP k*.

� If e�1ceT
0
e < u2D < ð1þ e�1ÞceT 0

e , then $k1,k2 such that the solution is unstable for k 2 ]k1,k2[ and stable

otherwise.

� If u2D < e�1ceT
0
e then the solution is unconditionally stable.

The thresholds ð1þ e�1ÞceT 0
e and e�1ceT

0
e in scaled variables correspond to the threshold values

ðm�1
i þ m�1

e ÞceT 0
e and m�1

e ceT
0
e in unscaled variables.
4.1.2. Linear analysis of the quasi-neutral model

In this section, we consider the quasi-neutral systems (2.25)–(2.30), (2.33)–(2.36) and (2.38)–(2.40). The

linearization of these systems about U0 leads to the same system.

Proposition 4.3. The quasi-neutral systems (2.25)–(2.30), (2.33)–(2.36), (2.38)–(2.40) linearized about U0

admit a plane-wave solution of the form W ¼ �W exp½iðkx� xtÞ� iff x and k are related by the dispersion

relation
0 ¼ 1

x2 � ciT
0
i k

2
þ 1

e ðx� kuDÞ2 � ceT
0
e k

2
: ð4:2Þ
The resolution of (4.2) reduces to computing the roots of a second degree polynomial function, which

can be done explicitly

Proposition 4.4. We have:

� If u2D > ð1þ e�1ÞðciT 0
i þ ceT

0
eÞ, the solution is unstable for all k.

� If u2D 6 ð1þ e�1ÞðciT 0
i þ ceT

0
eÞ, the solution is unconditionally stable.

The threshold ð1þ e�1ÞðciT 0
i þ ceT

0
eÞ in scaled variables correspond to the threshold value

ðm�1
i þ m�1

e ÞðciT 0
i þ ceT

0
eÞ in unscaled variables.

The limit kg ! 0 in the Euler–Poisson dispersion equation (4.1) leads to the quasi-neutral dispersion

equation (4.2). Then, in the linearized case, the solutions of the Euler–Poisson system tend to the solutions

of the quasi-neutral system when kg ! 0. The roots x of (4.1) corresponding to quasi-neutral propagation

modes (sound waves) tend to the roots of (4.2) when kg ! 0. On another hand, the roots corresponding to

plasma electron waves tend to infinity when kg ! 0.

Moreover, we note that the condition of hyperbolicity (2.41) for the one-fluid formulation corresponds

to the condition of linear stability for the quasi-neutral model.
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4.2. Numerical simulation of a uniform plasma perturbation

4.2.1. Parameters of the numerical simulation

We select parameters issued from plasma arc physics (see e.g. [6,19,39]) that lead to the following values:

ci = ce = 5/3, ci = ce = 1, e � 10�4,
ffiffiffiffiffi
kg

p
� 10�3, uD = 1. The perturbation is taken monochromatic with a

wave number k equal to 2p, and the perturbation at initial time is set to n1i ðt ¼ 0Þ ¼ n1eðt ¼ 0Þ ¼
0; u1i ðt ¼ 0Þ ¼ u1eðt ¼ 0Þ ¼ 10�2.

We note that the scaled values of the electron plasma frequency xp and of the sound velocity vs are
xp ¼
1ffiffiffiffiffiffiffi
ekg

p ¼ 105; vs ¼
ciT

0
i þ ceT

0
e

1þ e

� �1
2

¼ 11:47: ð4:3Þ
The values ± xp and ± k vs correspond to the roots x of the Euler–Poisson dispersion relation calculated

by a QR method [32]. These roots are real numbers which corresponds to a stable regime. We notice that

the high frequency modes correspond to the plasma frequency and the low frequency modes to the sound
waves in the plasma.

The roots of the linearized quasi-neutral system are directly obtained by solving the dispersion equation

(4.2) which leads to x. ± kvs = 11.47 and corresponds to a stable case. Furthermore, high frequency modes

of the Euler–Poisson model which are associated with plasma waves have disappeared in the quasi-neutral

limit while low frequency acoustic waves remain. We can see that the quasi-neutral limit leads to a drastic

reduction of the stiffness of the problem.
4.2.2. Accuracy of the different schemes

We study the accuracy of the schemes given in Section 3. For all the systems, the reference solution is the

linearized Euler–Poisson analytical solution. We define the relative error on the ion and electron densities at

time tn as
dni;e ¼
jjnni;e � n�i;eðx; tnÞjjl2

jjnni;e � n0jjl2
¼

PN
k¼1

ðni;eÞnk � n�i;eðxk; tnÞ
� �2
PN
k¼1

ðni;eÞnk � 1
� �2

26664
37775

1
2

; ð4:4Þ
where n�i;e is the analytical density of the Euler–Poisson model linearized about U0 and xk = (k + 1/2)Dx for

all k = 1 to N.

First, we study the constrained two-fluid scheme. We compare the polynomial scheme without reprojec-

tion method, the polynomial scheme with reprojection method and the HLLE scheme (which does not need

any reprojection step since it ensures ne = ni automatically). In Fig. 1, the ion density (left figure) and elec-
tron density (right figure) obtained at a fixed time (t = 0.12) by these three schemes are compared with the

analytical solution of the linearized Euler–Poisson system for different values of the mesh size Dx. First, we
observe that all schemes converge towards the analytical solution when Dx ! 0. Then, we note that even if

it guarantees quasi-neutrality, the HLLE scheme remains of low accuracy compared with a polynomial

scheme. Moreover, for the polynomial scheme, the reprojection step degrades the accuracy for the ion den-

sity but improves it for the electron density. In the remainder of this work, we shall use the polynomial

scheme with reprojection step for the implementation of the constrained two-fluid scheme.

Then, we compare the accuracy of the constrained two-fluid, 1.5-fluid, one-fluid and Euler–Poisson
schemes. The schemes are all implemented with a polynomial solver.

In Fig. 2 (left figure), we plot dni as a function of Dx at a fixed time (t = 0.12). We first observe that the

error decreases when the mesh size Dx decreases but eventually saturates to a finite value. Indeed, the error



Fig. 1. Relative error on the ion density (left) and on the electron density (right) at a fixed time (t = 0.12) as a function of the mesh size

Dx for three schemes solving the constrained two-fluid model: the HLLE scheme (dashed line), the polynomial scheme without

reprojection step (dotted line) and the polynomial solver with reprojection step (dashed-dotted line). The HLLE scheme preserves

quasi-neutrality. The polynomial scheme does not and quasi-neutrality can be enforced using (3.11) (reprojection step) or not.

Fig. 2. Relative error on the ion density at a fixed time (t = 0.12), as a function of the mesh size (left) and as a function of the mass ratio

e for a fixed mesh size Dx = 10�3 (right). The constrained two-fluid scheme has a poorer convergence as Dx ! 0 than the two- and 1.5-

fluid models and its accuracy depends on the mass ratio e while the other ones do not.
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is computed by comparison with the analytical solution of the linearized model, while the schemes actually

converge to that of the non-linear model. This saturation reflects the difference between the solution of the

linearized and non-linear models. Nonetheless, we can use these results before saturation to study the
numerical efficiency of the different schemes. We observe that the order of convergence is O(Dx) for all

the schemes and we observe that the 1.5-fluid, one-fluid and Euler–Poisson schemes are more accurate than

the constrained two-fluid scheme.

In Fig. 2 (right figure), we plot dni as a function of e at time t = 0.12 with Dx = 10�3. We observe that the

accuracy of all the numerical schemes is independent of the mass ratio e but for the constrained two-fluid

scheme, whose accuracy degrades as e! 0.

Then, evaluating graphically the orders of convergence leads to the following conclusions:

� The order of convergence of the one-fluid, 1.5-fluid and Euler–Poisson schemes is O(Dx).
� The order of convergence of the constrained two-fluid scheme is OðDx=

ffiffi
e

p
Þ.

Similar observations made on the ion and electron velocities have confirmed these conclusions.
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We can draw a certain number of conclusions from this analysis. First of all, the constrained two-fluid

formulation appears to be less efficient than the 1.5- and one-fluid formulations. At first glance, one could

think that the inefficiency of the constrained two-fluid formulation is linked to the fact that the electron and

ion densities have to be made equal by some artificial numerical procedure. However, this conclusion is

erroneous since the HLLE scheme which does not require any reprojection step according to Proposition
3.1 appears to be of lower accuracy than a polynomial scheme which does need such a reprojection proce-

dure (see Fig. 1).

Second, the loss of accuracy of the constrained two-fluid formulation appears to be related to the fact

that e multiplies the time derivative in the momentum equation (2.28), i.e. to an ill-conditioning of this

equation. In the other formulations, e never multiplies the time derivatives alone (only the factor (1 + e)
does) and this conditioning problem does not appear. This conclusion is supported by the numerical deter-

mination of the orders of accuracy, which is e-dependent for the constrained two-fluid model but e-indepen-
dent for the 1.5- and one-fluid models.
5. Plasma expansion in vacuum

We are interested in a one-dimensional modeling of a quasi-neutral plasma expansion in vacuum be-

tween two electrodes. The plasma is injected at the cathode and undergoes a thermal expansion. At the

front of the plasma, electrons are attracted by the positive potential of the anode and are emitted. The emis-

sion creates an electron beam in the vacuum from the plasma front to the anode, and this process generates
a current in the whole device and in particular in the plasma.

This phenomenon is studied in relation with two physical applications: high-current diodes

[30,34,45,54,57], and arcing on satellite solar generators [6,19,25–28,38,39,50,51,56]. A series of works

[13–16] have been realized to describe this process. In all these works, the plasma is described by the

one-fluid formulation of the quasi-neutral model. The electron beam is described by an analytical Child–

Langmuir model (see e.g. [5,11,12,18]). Finally, a transmission problem is resolved to couple the plasma

and the beam models.

We first summarize the model proposed in [14,15]. In Section 5.2, we describe the numerical methods
used for interface tracking. Finally, in Section 5.3, we present the numerical results.
5.1. Models for the plasma and beam regions, transition problem

We refer to Section 2.2 for the scaling. In scaled variables, the cathode is located at x = 0, the anode at

x = 1 and a potential difference /L = g�1 is applied between these two electrodes. A quasi-neutral plasma is

injected at the cathode such that ni|x = 0 = ne|x = 0 = 1, ui|x = 0 = 1, and ue|x = 0 = 1. Setting the potential ori-

gin at x = 0 gives /|x = 0 = 0 and /|x = 1 = /L. At the initial time t = 0, the domain is free of plasma.
At time t = 0, the electrons and the ions penetrate the domain. We denote by Xe(t) and Xi(t) the positions

of the electron–vacuum and ion–vacuum interfaces. Because of the acceleration of the electrons by the po-

tential, Xe(t) reaches the anode x = 1 after a very short time while Xi(t) proceeds more slowly. Formally,

Xi(t)! X(t) when kg ! 0, where X(t) is the interface between the quasi-neutral plasma region and the re-

gion where the electrons are accelerated (the beam region). Therefore, the quasi-neutral region [0,X(t)[ can

be described by one of the formulations of the quasi-neutral model. The region [X(t),1] is occupied by the

electron beam and is devoid of ions, and, according to [14,15], can be described by the Child–Langmuir

model [18,31]. This is a stationary model: the electrons being accelerated by the very strong electric poten-
tial, of order g�1, cross the gap almost instantaneously. The current is given by the Child–Langmuir rela-

tion, which, in our scaled units, reads:
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�neueðx; tÞ ¼ jCLðtÞ ¼ �4

ffiffiffi
2

p
k

9

1

ð1� X ðtÞÞ2 ffiffiffiffiffi
ge

p : ð5:1Þ
The electron density and electric potentials have analytical formulations (see [14,15,18,31]).

The connection between the quasi-neutral plasma model and the Child–Langmuir model for the beam is

realized through the following matching conditions:

� the velocity of the interface is such that
dX=dt ¼ uiðX ðtÞ; tÞ 8t > 0; ð5:2Þ

� the current is continuous across the interface
jðtÞ ¼ niuiðx; tÞ � neueðx; tÞ ¼ jCLðtÞ 8x 2 ½0; 1�; 8t > 0; ð5:3Þ

� a range of admissible values are given for the quasi-neutral density at the interface
niðX ðtÞ; tÞ ¼ neðX ðtÞ; tÞ 6 npðtÞ; ð5:4Þ

where np is determined by
cicin
ciþ1
p þ cecen

ceþ1
p ¼ e j2:
� The electric potential at the interface vanishes:
/ðX ðtÞ; tÞ ¼ 0: ð5:5Þ
Condition (5.2) states that the plasma–beam interface is the boundary of the region occupied by the ions,

since the electrons fill the whole gap (see the discussion at the beginning of this section). This boundary

obviously moves with the velocity of the ions at this boundary, which is what (5.2) expresses. The second

condition (5.3) matches the plasma current (described by the quasi-neutral model) with the beam current
(described by the Child–Langmuir law). It assumes that charge variations in the transition region are neg-

ligible. Condition (5.4) means that the plasma is supersonic with respect to the interface velocity, which is a

possible formulation of Bohm�s sheath criterion (see e.g. [42]). Finally, (5.5) expresses that the potential

being continuous and identically zero in the plasma quasi-neutral region, must be equal to zero at the inter-

face. All four conditions have been justified by an analytical study of the transition region in [15].

We stress the fact that we do not impose any condition on the electron density at the interface X(t) on the

beam side. Indeed, the electron density obtained through the Child–Langmuir law is given by ne ¼ jCL=
ffiffiffiffi
/

p

(see e.g. [18,31]) and is infinite since /(X) = 0. As a result, the description of the transition region by this
asymptotic model is not very accurate, since the actual electron density (as given by the Euler–Poisson mod-

els for instance) remains finite. However, the transition region is very tiny and there is a fairly good agree-

ment between the original Euler–Poisson model and the asymptotic model away from the transition region

as we shall see further on the numerical results.
5.2. Numerical methods, interface tracking

In this section, we complete the description of the numerical schemes for the plasma expansion prob-
lem. We recall that the quasi-neutral model is defined only on the plasma domain [0,X(t)[. The main

difficulties here are the interface localization, the description of its motion and the computation of

the fluxes across it.

According to [14,15], we choose a front tracking method to localize the interface, which is the most nat-

ural method for one-dimensional simulations. Eq. (5.2) can be discretized by an Euler scheme
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Xnþ1 ¼ Xn þ Dtn uniX ; ð5:6Þ
where uniX is an approximation of ui(X(t
n),tn) and is determined below. Thanks to (5.1), (5.3) and (5.6), the

current at time tn + 1 can be computed as soon as the position Xn and the velocity uniX of the interface at time

tn are known.

For the computation of the first step of the time splitting (see Section 3), we assume that the right-end of

the last cell corresponds to the plasma–beam interface. To this aim, we denote by k0 the index such that

Xn 2�x
k0�

1
2

; x
k0þ

1
2

½, and we define an adaptive space discretization. At time tn, we have
Mk ¼�xk�1
2
; xkþ1

2
½ 8k 6 k0 � 2 and Mk0�1 ¼�xk0�3

2
;Xn½: ð5:7Þ
In Fig. 3, we represent the trapezoidal rightmost space–time cell of the mesh. The numerical scheme for the

space–time cells Mn
k 	 ½tn; tnþ1� has already been given in Section 3 when k < k0�1. The scheme on the last

cell is given by
ðXnþ1 � xk0�3
2
Þ eW nþ1

k0�1 � ðXn � xk0�3
2
ÞW n

k0�1 þ Dtn F n
k0�1

2
� F n

k0�3
2

� �
¼ 0; ð5:8Þ
where F n

k0�
3
2

is classically given by a Riemann solver and F n

k0�
1
2

is given by

n n n n
F k0�1
2
¼ �W vuiX þ F ðW vÞ; ð5:9Þ
where W n
v is the solution at the interface.

For the one-fluid scheme, the state W n
v ¼ ðn; nuiÞnv is computed by resolving a Riemann problem where

the left state is the plasma state W n
k0�1 before the interface and the right state is the vacuum. The condition

(5.4) is taken into account as follows. If nnk0�1 6 npðtnÞ then the solution of the Riemann problem at the

interface is the plasma state W n
k0�1 separated from the vacuum by a shock wave moving with the speed

ðuiÞnk0�1. Else, the solution of the Riemann problem involves a rarefaction wave associated with the first

characteristic field connecting nnk0�1 to np(t
n). This leads to (ni)v = np and to the determination of ðuiÞnv

(see [14,15] for the details).

For the 1.5-fluid scheme, we have W n
v ¼ ðn; nui; jÞnv . At the interface, ðn; uiÞnv is given as previously and the

current jnv is given following (5.3), i.e. jnv ¼ jn. Finally, in the two-fluid case, the state of ions at interface
ðni; niuiÞnv is still given as previously. Then, considering that the plasma is quasi-neutral at the interface,

and following (5.3) we have nnev ¼ nniv and unev ¼ univ � jn=nniv . The interface velocity is given by the state of

ions at the interface such that uniX ¼ ðuiÞnv .

5.3. Numerical results

We study a case of arcing on satellite generators [6,19,39]. The physical values for this problem are

ci = ce = 5/3, ci = ce = 1, e � 10�4, k � 10�4 and g � 10�2. The Euler–Poisson results are given as a
reference.
Fig. 3. Rightmost space–time cell of the mesh before the interface.
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We first discuss the results of the constrained two-fluid scheme at the scaled times t = 0.05 and t = 0.15.

In Fig. 4 (top), we represent the ion density (top left) and electron density (top right) as functions of x, ob-

tained by the constrained two-fluid model implemented with a polynomial solver without reprojection step.

We observe that the ion density is fairly well approximated and that the interface is well localized. However,

there is a large error on the electron density and the results are far from quasi-neutrality. In Fig. 4 (bottom
left) we represent the density obtained by the same scheme together with a reprojection step (electron and

ion densities being forced to be equal, there is only one single figure). In this case, the quasi-neutrality is

enforced but the error remains very large and the interface is badly localized. In Fig. 4 (bottom right)

we show the same results computed on a refined mesh (Dx has been divided by 4). We observe that the

results have improved. Yet, the convergence of the constrained two-fluid scheme when Dx ! 0 appears

again to be quite slow. This confirms the observations made in Section 4.2.2 about the ill conditioning

of the constrained-two fluid model.
Fig. 4. Constrained two-fluid model. Top figures: without reprojection step enforcing quasi-neutrality, the ion density (top left) and

electron density (top right) are away from each other. They are plotted as functions of x at times t = 0.05 and t = 0.15 for Dx = 10�3.

Bottom figures: with reprojection step, the electron and ion densities are forced to be equal. They are plotted as functions of x at times

t = 0.05 and t = 0.15 for Dx = 10�3 (left) and Dx = 2.5 · 10�4 (right). All these results are compared with the Euler–Poisson model

computed on a mesh with Dx = 5 · 10�4.
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Then, we discuss the results of the 1.5-fluid model. In Fig. 5, we represent the quasi-neutral density (top

left figure), the ion velocity (top right figure) and the electron velocity (bottom figure) as functions of x in

the plasma zone at times t = 0.05 and t = 0.15. We observe that the 1.5-fluid model behaves globally quite

well within the plasma region. There are two zones where a significant discrepancy occurs: the transition

region between the plasma and the beam regions on the one-hand and the injection zone located near
the cathode where a boundary layer seems to form. We successively focus on these two regions to better

understand the reasons of these discrepancies.

In Fig. 6, we magnify the interface zone at the scaled time t = 0.15. In the top figure, we represent the ion

and electron densities given by the Euler–Poisson model as functions of x in the interface region and com-

pare them with the quasi-neutral density obtained by the 1.5-fluid scheme. In the bottom figure, the ion

velocities obtained by the Euler–Poisson and 1.5-fluid schemes are represented as functions of x. According

to the Euler–Poisson results, we observe that we have a smooth transition from the quasi-neutral plasma to

the electron beam. The transition region represents about 4–5% of the domain. In this region, the ion den-
sity and velocity decrease smoothly from a non-zero value to zero, while the electron density remains nearly

constant. With the 1.5-fluid model, this transition is replaced by jump discontinuities of the quasi-neutral

density and ion velocity from a non-zero value in the plasma to zero in the beam. This behavior is a direct

consequence of the matching condition (5.4), which allows the existence of an interface shock (see also the
Fig. 5. 1.5-fluid model: quasi-neutral density (top left figure), ion velocity (top right figure) and electron velocity (bottom figure) as

functions of x at times t = 0.05 and t = 0.15 with Dx = 10�3. The simulations are compared with the results of the Euler–Poisson

scheme with mesh size Dx = 5 · 10�4.



Fig. 6. 1.5-fluid model: magnification of the densities (top) and ion velocity (bottom) as functions of x in the vicinity of the plasma–

beam interface at time t = 0.15. In the top figure, the 1.5-fluid quasi-neutral density (dashed line) is compared with the electron density

(dotted line) and ion density (solid line) obtained by the Euler–Poisson model. In the bottom figure, the 1.5-fluid ion velocity (dashed

line) is compared with the Euler–Poisson ion velocity (solid line). In both figures, the boundaries of the transition zone are indicated by

two vertical dotted lines.
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discussion at the end of Section 5.2). In this figure, for the sake of clarity, we have not displayed the electron

density in the beam region as given by the Child–Langmuir law. If we had done so, we would see that this

density is infinite on the right of the interface shock, and would then decrease smoothly and rejoin the den-

sity given by the Euler–Poisson scheme (see also Fig. 9 and its discussion below). It should be noted how-

ever that the position of the interface shock is correctly determined by the 1.5-fluid scheme as it remains

within the transition zone. This is important to obtain a good agreement in the beam region, since the
Child–Langmuir current (5.1) is directly related to the position of the interface.

In Fig. 7, we magnify the region close to the cathode (which we refer to as the �injection zone�) at the
scaled time t = 0.15. We represent the densities (top left figure), the ion velocity (top right figure) and

the current (bottom figure) obtained by the 1.5-fluid and Euler–Poisson models as functions of x. The Eu-

ler–Poisson simulations show that a non-quasi-neutral boundary layer prevails in the injection region and

the quasi-neutral model is not well suited to this region. However, it is noticeable that the values of the

density and ion velocity obtained by the Euler–Poisson model at the right-end of the injection region



Fig. 7. 1.5-fluid model: magnification of the densities (top left), ion velocity (top right), and current (bottom) as functions of x in the

vicinity of the cathode (injection zone) at time t = 0.15. In the top left figure, the 1.5-fluid quasi-neutral density (dashed line) is

compared with the electron density (dotted line) and ion density (solid line) obtained by the Euler–Poisson model. In the top right

figure, the 1.5-fluid ion velocity (dashed line) is compared with the Euler–Poisson ion velocity (solid line). In the bottom figure, the

uniform electrical current of the quasi-neutral model is compared with the non-uniform current obtained by the Euler–Poisson model.

The mesh size is Dx = 10�3 for the 1.5 fluid model and Dx = 5 · 10�4 for the Euler–Poisson model. The boundary of the injection zone

has been indicated by a vertical dotted line.
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remain nearly constant in time. If these values are used as boundary conditions for the 1.5-fluid model the

results improve dramatically, as shown in Fig. 8. We represent the ion and quasi-neutral densities (top left
figure), the ion velocity (top right figure) and the electron velocity (bottom figure) in the plasma zone at the

scaled times t = 0.05 and t = 0.15, and observe that there is a good agreement between the 1.5-fluid model

and the Euler–Poisson model. This indicates that a boundary layer model is necessary to correctly prescribe

the boundary values of the quasi-neutral model on the cathode side. The derivation of such a boundary

layer model is work in progress.

In Fig. 9, we study the Child–Langmuir law approximation for the beam region at the scaled times

t = 0.05 and t = 0.15. We represent the electron density (top left figure), the electric potential (top right

figure), the electron velocity (bottom left figure) as functions of x in the beam region. In the bottom right
figure, the current is shown as a function of x in the whole device. We observe that the Child–Langmuir law

approximation is rather well suited to the description of the beam and to the computation of the current in

the plasma. The small errors than can be observed seem to be related to the approximation of the location

of the plasma–beam interface.



Fig. 8. 1.5-fluid model: the boundary conditions for the 1.5-fluid model at x = 0 have been set equal to the values computed from the

Euler–Poisson model at the right-end of the injection zone (see Fig. 7). In the top left figure, the 1.5-fluid quasi-neutral density is

compared with the ion density of the Euler–Poisson model. Ion velocities and electron velocities are displayed on the top right figure

and bottom figure, respectively. The figures have been taken at time t = 0.05 and t = 0.15. The mesh size is Dx = 10�3 for the 1.5 fluid

model and Dx = 5 · 10�4 for the Euler–Poisson model. We can observe a good agreement between the two models over the plasma

region.
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Results from the one-fluid model are not shown in this section because the results are very similar to
those of the 1.5-fluid model. However, the one-fluid model breaks down earlier because the hyperbolicity

condition is violated.

Finally, oscillations occur at the plasma–vacuum interface for the 1.5-fluid and two-fluid models, and

lead to the breakdown of the simulations. It appears that these oscillations depend on the mesh refinement

but they happen earlier in time when the mesh is refined. On the same way, the condition of hyperbolicity of

the one-fluid scheme is violated earlier when the mesh size decreases. The density (left figure) and ion veloc-

ity (right figure) obtained by the 1.5-fluid model at time t = 0.10 and for Dx = 10�4 are plotted in Fig. 10.

We can observe the development of these oscillations near the plasma–beam interface. Moreover, in Table
1, we list the times corresponding to the breakdown of the 1.5-fluid and one-fluid schemes as functions of

the mesh size.

The breakdown of the various schemes can be attributed to a physical two-stream instability which oc-

curs when the plasma current reaches large values as the interface moves closer to the anode. In these con-

ditions, non-quasi-neutral modes may be excited, which the quasi-neutral model fails to describe. As a



Fig. 9. Child–Langmuir law in the beam region: comparison with the Euler–Poisson model. Electron density (top left figure), electric

potential (top right figure), electron velocity (bottom left figure) and current (bottom right figure) as functions of x at times t = 0.05 and

t = 0.15. The mesh size is Dx = 5 · 10�4 for the Euler–Poisson model. The Child–Langmuir solution is computed analytically,

following [15,18,31]. We observe a good agreement between the two models. The singularity of the Child–Langmuir density at the

interface can be noticed.

Fig. 10. Breakdown of the 1.5-fluid model: ion density (left) and ion velocity (right) as functions of x at the scaled times t = 0.100 and

t = 0.104. Oscillations start to develop at the interface, eventually leading to a negative density. The mesh size is Dx = 10�4.

P. Crispel et al. / Journal of Computational Physics 205 (2005) 408–438 431



Table 1

Scaled times tmax corresponding to the breakdown of the one-fluid and 1.5-fluid schemes as functions of the mesh size

One-fluid model 1.5-Fluid model

Dx = 10�3 tmax � 0.08 tmax � 0.17

Dx = 2 · 10�4 tmax � 0.04 tmax � 0.12

Dx = 10�4 tmax � 0.03 tmax � 0.10

Dx = 5 · 10�5 tmax � 0.02 tmax � 0.09
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result, a numerical instability develops and leads to the collapse of the numerical scheme. Moreover, with a

smaller mesh size, the numerical diffusion is lower and offers a weaker resistance against the instability, thus

explaining that breakdown occurs earlier. It is therefore desirable to develop a model which allows non-

quasi-neutral modes to develop in such extreme situations. The derivation of such a model is the subject

of current research.
6. Conclusion

In this paper, we have proposed three formulations of a quasi-neutral model with a non-

vanishing current. We have implemented the various formulations on two test-problems and compared

their numerical efficiencies. Moreover, we have developed a linear analysis of the quasi-neutral

model.

The conclusions of this study are that, on the one hand, the 1.5-fluid model seems the most efficient

model for the numerical modeling of a current-carrying quasi-neutral plasma. Indeed, the two-

fluid model has a lower accuracy related to the mass ratio of the species in the plasma, and the
one-fluid model can only be used in one-dimensional cases. On the other hand, it would be desirable

for the quasi-neutral model to be easily connected with non-quasi-neutral regions (such as sheath re-

gions). From this point of view, the constrained two-fluid formulation seems to be best adapted for

this coupling. Using this idea, a hybrid model which allows a smooth transition from the constrained

two-fluid formulation of the quasi-neutral model to the Euler–Poisson model is currently under

development.

Of course, realistic applications of the present study (such as high-current diodes, arcing on

solar cells or more generally, plasma–sheath problems) are intrinsically two- or three-dimensional. In
practice, multi-dimensional interface problems require a complicated and expensive interface tracking

procedure unless some smoothing of the interface is performed, in the spirit of level-set methods

for instance. Currently, we pursue this direction by developing the above-mentioned hybrid model.

This model will have the capability of describing the plasma–beam transition region without the

requirement of an interface tracking procedure. This model will be presented and discussed in future

work.
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Appendix A. Proofs

A.1. Proof of Proposition 3.1

We prove it by induction. Let assume that the quasi-neutrality holds and that the current is a constant at
time tn:
8k; nnik ¼ nnek ¼ nnk ; and ðnuiÞnk � ðnueÞnk ¼ jn: ðA:1Þ
The two-fluid scheme for the computation of ion and electron densities gives, for all k,
nnþ1
ik

¼ nnik �
Dtn

Dx
ðnuiÞkþ1=2 � ðnuiÞk�1=2

� �n
; ðA:2Þ

nnþ1
ek

¼ nnek �
Dtn

Dx
ðnueÞkþ1=2 � ðnueÞk�1=2

� �n
: ðA:3Þ
We briefly recall that the HLLE Riemann solver is given by (see e.g. [55] for the details)
ðnuni;eÞkþ1=2 ¼
1

kþk � k�k

kþk ðnui;eÞk � k�k ðnui;eÞkþ1 þ kþkk�k ðni;ek � ni;ekþ1
Þ

� �n
; ðA:4Þ
where kþk and k�k are defined in [55] (their values do not affect the result). Then, we have for all k,
nnþ1
ik

� nnþ1
ek

¼Dtn

Dx
ðnueÞkþ1=2 � ðnueÞk�1=2 � ðnuiÞkþ1=2 þ ðnuiÞk�1=2

� �n
;

¼ Dtn

Dxðkþk � k�k Þ
n ½ kþk ðnueÞk � k�k ðnueÞkþ1 þ kþkk�k nk � nkþ1ð Þ
� �

� kþk ðnuiÞk � k�k ðnuiÞkþ1 þ kþkk�k nk � nkþ1ð Þ
� �

�n

þ Dtn

Dxðkþk�1
� k�k�1

Þn ½ kþk�1
ðnuiÞk�1 � k�k�1

ðnuiÞk þ kþk�1
k�k�1

nk�1 � nkð Þ
� �

� kþk�1
ðnueÞk�1 � k�k�1

ðnueÞk þ kþk�1
k�k�1

nk�1 � nkð Þ
� �

�n;

¼Dtn

Dx
k�k jkþ1 � kþk jk

kþk � k�k

þ kþk�1
jk�1 � k�k�1

jk
kþk�1

� k�k�1

� �n

:

ðA:5Þ
The current is a constant at time tn, i.e. 8k; jnk ¼ jnkþ1 ¼ jnk�1 ¼ jn, then (A.5) implies nnþ1
ik

� nnþ1
ek

¼ 0. Since

the hypothesis (A.1) is verified at initial time, this gives the result. h
A.2. Modal analysis for a uniform plasma perturbation case

A.2.1. Proof of Proposition 4.1

We consider the Euler–Poisson system (2.13)–(2.17) linearized about U0. It is given by: 8x 2 R; 8t > 0
ðniÞt þ ðuiÞx ¼ 0; ðA:6Þ

ðneÞt þ ðueÞx þ uDðneÞx ¼ 0; ðA:7Þ

ðuiÞt þ ciT
0
i ðniÞx ¼ E; ðA:8Þ

eðueÞt þ ceT
0
eðneÞx þ euDðueÞx ¼ �E; ðA:9Þ
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kgEx ¼ ni � ne: ðA:10Þ

Let W be equal to (ni,ne,ui,ue), and consider plane-wave solutions W ¼ �W exp½iðkx� xtÞ� of (A.6)–(A.10).
Then, we have
�x �W þ AðkÞ �W ¼ 0; ðA:11Þ

where
AðkÞ ¼

0 0 k 0

0 kuD 0 k

kciT
0
i þ 1

kkg
�1
kkg 0 0

�1
ekkg

kceT
0
e

e þ 1
ekkg 0 ku0

0BBBB@
1CCCCA: ðA:12Þ
This system admits non-zero solutions iff det(A(k) � xI) = 0, which leads to the dispersion equation

(4.1). h
A.2.2. Proof of proposition 4.2

Equation (4.1) is written as a polynomial equation of the fourth degree for the variable x with real coef-

ficients. Hence, for a fixed value of k, if this equation admits a complex solution x, then its complex con-

jugate is a solution too. If there exists at least one solution of (4.1) with Im(x) < 0, then the solution is

unstable. To obtain a tractable solution, we suppose that T 0
i ¼ 0. The dispersion equation (4.1) becomes
DxðkÞ ¼ k2 eu2D � ceT
0
e

� �
kgx2 � 1
� �

� 2kexuD kgx2 � 1
� �

þ x2 eðkgx2 � 1Þ � 1
� �

¼ 0: ðA:13Þ
We solve this equation for k as a function of x. The reduced discriminant of Dx(k) is
D0 ¼ ðkgÞ2eceT 0
ex

2ðx2 � 1=ðkgÞÞðx2 � aÞ;

where
a ¼ ðð1þ eÞs0e � eu2DÞ=ðkgeceT 0
eÞ:
Then, the solutions of the dispersion equation (A.13) are
k
ðxÞ ¼
1

eu2D � s0e
euDx
 jxj eceT

0
e þ

eu2D � ceT
0
e

kgx2 � 1

� �1=2
" #

:

Considering x as a parameter, the solution k± is real if D 0 > 0 which is equivalent to either

� (i) a < 0 and jxj > 1=
ffiffiffiffiffi
kg

p
,

� (ii1) a > 1/kg and jxj < 1=
ffiffiffiffiffi
kg

p
, (ii2) a > 1/kg and jxj >

ffiffiffi
a

p
,

� (iii1) 0 < a < 1/kg and jxj < ffiffiffi
a

p
, (iii2) 0 < a < 1/kg and jxj > 1=

ffiffiffiffiffi
kg

p
.

Then, we study the behavior of k+ and k� when x reaches the bounds of the definition domain. When x
tends to 
1=

ffiffiffiffiffi
kg

p
, k+ tends to +1 and the solution k� tends to �1. When x tends to ±1, the solution k± is

such that k
 � ðeuDx
 jxj
ffiffiffiffiffiffiffiffiffiffiffi
eceT

0
e

q
Þ=ðeu2D � ceT

0
eÞ. We deduce the following limits:

� If a < 1/kg, when x tends to1, k+ tends to1 and k� tends to1. When x tends to �1, k+ tends to �1
and k� tends to �1.

� If a > 1/kg, when x tends to 1, k+ tends to �1 and k� tends to 1. When x tends to �1, k+ tends to

�1 and k� tends to 1.
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Note that if k = 0, the dispersion equation (4.1) gives
Fig. 11
ekgx4 ¼ ð1þ eÞx2:
Then, x = 0 is a root of order 2 and x
 ¼ 
ð 1
kg þ 1

kgeÞ
1=2

are single roots. We remark that this result does not

depends on T 0
i .

This study permits to have a qualitative representation of the dispersion curve. We represent k+(x) and
k�(x) in Figs. 11 and 12. To analyze the stability, the process is the following. If for a given k0 2 R�, the

curve k = k0 has four intersection points with the curve k±(x), then there are four real roots of the disper-

sion equation (A.13) and the solution is stable. Otherwise, there exists a complex root of (A.13) with a po-

sitive imaginary part and the solution is unstable.

� First case (see Fig. 11): If a < 0 which is equivalent to u2D > ð1þ eÞceT 0
e=e, and k > 0, the solution is stable

if k is sufficiently large. Otherwise, it is unstable. We note that in the limit kg ! 0, all the roots go to
infinity. Then, the solution at the quasi-neutral limit is unconditionally unstable.

� Second case (see Fig. 12): If a > 0 which is equivalent to u2D < ð1þ eÞceT 0
e=e, and k > 0, two configura-

tions are possible

– (a) a > 1/kg which is equivalent to u2D < ceT
0
e=e: The solution is stable for all k.

– (b) a < 1/kg which is equivalent to ceT
0
e=e < u2D: There exist k1 and k2 such that the solution is unstable

for k 2 ]k1,k2[ and stable otherwise.

We remark that in both cases, the high frequency modes corresponding to jxj > maxð1=
ffiffiffiffiffi
kg

p
;
ffiffiffi
a

p Þ tend
to infinity when kg ! 0, but low frequency modes remain. Hence, the solution at the quasi-neutral limit is
stable. h
A.2.3. Proof of Proposition 4.3

The quasi-neutral formulations are formally equivalent. Therefore, we consider the one-fluid formula-
tion ((2.38)–(2.40)) linearized about U0. It is given by: 8x 2 R; 8t > 0
. Dispersion curve D(x,k) = 0 with T 0
i ¼ 0 in the plane (x,k) if u2D > ð1þ eÞceT 0

e=e. The solution is stable if k is sufficiently large.



Fig. 12. Dispersion curves D(x,k) = 0 with T 0
i ¼ 0 in the plane (x,k) if u2D < ð1þ eÞceT 0

e=e. Left: case u2D < ceT
0
e=e. Right: case

ceT
0
e=e < u2D.
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ðniÞt þ ðuiÞx ¼ 0; ðA:14Þ

ðuiÞt þ
1

ð1þ eÞ ciT
0
i þ ceT

0
e � eu2D

� �
ðniÞx þ

2euD
1þ e

ðuiÞx ¼ 0; ðA:15Þ

jx ¼ 0: ðA:16Þ

Let W be equal to (ni,ui), and consider plane-wave solutions W ¼ �W exp½iðkx� xtÞ� of (A.14)–(A.16). Then,

we have
�x �W þ BðkÞ �W ¼ 0; ðA:17Þ

where
BðkÞ ¼
0 k

k
ciT

0
i
þceT

0
e

ð1þeÞ � k
eu2

D

ð1þeÞ 2keuD

 !
: ðA:18Þ
This system admits non-zero solutions iff det(B(k) � xI) = 0, which leads to the dispersion equation

(4.2). h

A.2.4. Proof of Proposition 4.4

The starting point of the proof is the dispersion equation (4.2) written as a polynomial equation
DkðxÞ ¼ x2 � 2x
keuD
1þ e

� k2

1þ e
ciT

0
i þ ceT

0
e � eu2D

� �
¼ 0:
We note that Dk(x) is a polynomial function of degree 2. Then, x can be parametrized by k following
x
 ¼ k
euD
1þ e


 jkj
ffiffiffiffiffi
D0p

1þ e
;

with
D0 ¼ e2u2D þ ð1þ eÞðciT 0
i þ ceT

0
e � eu2DÞ:
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The solution is stable iff D 0 > 0, i.e.
ð1þ eÞðciT 0
i þ ceT

0
eÞ � eu2D > 0;
which concludes the linear stability analysis. h
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[33] G.A. Mesyats, Explosive Electron Emission, URO Press, Ekaterinburg, 1998.

[34] R.B. Miller, Mechanism of explosive electron emission for dielectric fiber (velvet) cathodes, J. Appl. Phys. 84 (1998) 3880–3889.

[35] K. Nanbu, S. Yonemura, Weighted particles in Coulomb collision simulations based on the theory of a cumulative scattering

angle, J. Comput. Phys. 145 (1998) 639–654.

[36] L. Pareschi, G. Russo, G. Toscani, Fast spectral methods for Fokker–Planck–Landau collision operator, J. Comput. Phys. 165

(2000) 216–236.

[37] S.E. Parker, R.J. Procassini, C.K. Birdsall, A suitable boundary condition for bounded plasma simulation without sheath

resolution, J. Comput. Phys. 104 (1993) 41–49.

[38] D.E. Parks, G.A. Jongeward, I. Katz, V.A. Davis, Threshold determining mechanisms for discharges in high voltage solar arrays,

J. Spacecraft Rockets 24 (1987) 367–371.

[39] D. Payan, A model of inverted voltage gradient discharge inducing a secondary arc between cells on a solar array, in: CNES,

European Round Table on modelling of S/C-plasma Interactions, 24–25 February 2000, ESA-ESTEC.

[40] M.S. Pekker, V.N. Khudik, Conservative difference schemes for the Fokker–Planck equation, U.S.S.R. Comput. Math. Math.

Phys. 24 (1984) 206–210.

[41] I.F. Potapenko, C.A. de Arzevedo, The completely conservative difference schemes for the nonlinear Landau–Fokker–Planck

equation, J. Comput. Appl. Math. 103 (1999) 115–123.

[42] K.U. Riemann, The Bohm criterion and sheath formation, J. Phys. D 24 (1991) 493–518.

[43] K.U. Riemann, Th. Daube, Analytical model of the relaxation of a collisionless ion matrix sheath, J. Appl. Phys. 86 (1999) 1201–

1207.

[44] V.A. Rozhansky, L.D. Tsendin, Transport Phenomena in Partially Ionized Plasma, Taylor & Francis, London, 2001.

[45] D. Shiffer, M. Ruebush, D. Zagar, M. LaCour, K. Golby, M. Haworth, R. Umstattd, Cathode and anode plasma in short-pulse

explosive field-emission cathodes, J. Appl. Phys. 91 (2002) 5599–5603.

[46] M. Slemrod, Shadowing and the plasma–sheath transition layer, J. Nonlinear Sci. 11 (2001) 193–209.

[47] M. Slemrod, Monotone increasing solutions of the Painleve 1 equation y00 = y2 + x and their role in the stability of the plasma–

sheath transition, Eur. J. Appl. Math. 13 (6) (2002) 663–680.

[48] M. Slemrod, The radio frequency driven plasma sheath: asymptotics and analysis, SIAM J. Appl. Math., submitted.

[49] M. Slemrod, N. Sternberg, Quasi-neutral limit for Euler–Poisson system, J. Nonlinear Sci. 11 (2001) 193–209.

[50] D.B. Snyder, D.C. Ferguson, B.V. Vayner, J.T. Galofaro, New spacecraft-charging solar array failure mechanism, in: 6th

Spacecraft Charging Technology Conference, AFRL-VS-TR-20001578, September, 2000.

[51] J.D. Soldi, D.E. Hastings, D. Hardy, D. Guidice, K. Ray, Flight data analysis for the photovoltaic array space power plus

diagnostics experiment, J. Spacecraft Rockets 34 (1997) 92–103.
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